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INTRODUCTION

The Applied Mathematics Unit of Boeing Computer Services has been in-
volved with solving large eigenvalue problems since its inception. In the
last seven years parallel advances in both computer architecture and nu-
merical algorithms have changed the class of problems that we now see.
The previously hard problems are now trivial. Solutions to the here-to-fore
intractible problems are now required. This paper will give an overview
of two application areas which generate large eigenvalue problems and the
block shifted Lanczos algorithm used in their solution. The computational
aspects of the algorithm are outlined. Some performance results with some
historical perspective are given.

SOURCE OF EIGENVALUE PROBLEMS

The large eigenvalue problems seen by the authors come from two quite
different areas: structural engineering and material science. Structural
engineering packages (e.g. MSC IN ASTRAN) use a finite element model of
the structure to analyze how the structure reacts to forces such as seismic
activity and wind loading. Two types of analysis, vibrational and buckling,

generate large sparse symmetric generalized eigenproblems.

A vibration analysis requires the computation of a small, relative to the
problem order, number of eigenvalues and their corresponding eigenvectors
of the problem

KX = MXA,

where K is the finite element stiffness matrix, M is the finite element mass
matrix, A. and X are the natural frequencies and normal mode shapes which
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are to be computed. The results are then used to approximate the solution
of a system of ordinary differential equations

Mx(t) + Kx(t) = o.

The buckling analysis is the determination of whether a structure buckled
under an applied force. Assuming that stiffness depends on the direction
in which the force is applied and using a first order Taylor's expansion of
the nonlinear stiffness matrix the buckling equation is

K~ = -.uK6(1)~,

where K is the stiffness matrix, K6 (I) is the differential stiffness matrix at
the applied force f, cI> is the buckling load and J.L is the factor of safety. Here
the eigenproblem is to compute the eigenvalue with smallest magnitude. H
it is less than 1 the structure will buckle under the applied force. H it is
greater than 1 the structure will withstand the applied force with a safety
margin given by the eigenvalue. In either case the eigenvector gives the
state of the structure under the applied force.

The eigenvalue problems in structural engineering can be quite large with
as many as 40000 degrees of freedom. Yet the matrices have 'only a few
nonzeroes per row. The stiffness matrix K is sparse and usually positive
semidefinite (it can be indefinite). The nonzero patterns of M and K6 are
usually subsets of K. For the vibration problem M is symmetric positive
semidefinite. K6, in the buckling problem, is symmetric indefinite. In
both problems, the physically meaningful eigenvalues are poorly separated
as they tend to be near zero. Yet there are usually some very large, if
not infinite, eigenvalues in the spectrum. The vibration problem can have
eigenvalues with very high multiplicities.

The eigenproblems arising in material science are quite different. They are
dense symmetric generalized eigenproblems of the form

AX= 

BX!.,

arising from applying a Rayleigh-Ritz variational model to solve
Schrodinger's equation for the quantum mechanical wave fUnction [2]. The
eigenproblems are generated in an iterative process where the eigensolution
of one step is used to formulate the next eigenproblem. Typically the lowest
ten percent of the eigenvalues and eigenvectors are required. The problem
order is dynamic with typical sizes near 1000 but it is not unreasonable to
consider problems on the order of 2000 and 3000.
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LANCZOS ALGORITHM

In recent years the Lanczos algorithm has become the method of choice
for large sparse generalized eigenvalue problems. A block shifted Lanczos
algorithm has been implemented by the authors and documented in detail
in [3]. For a discussion of the basic issues involving the practical use of the
Lanczos algorithm for eigenvalue computations see [4].

Here we will only discuss some aspects of the block shifted Lanczos algo-
rithm, as they are relevant for the understanding of the numerical results.
The simple, unshifted Lanczos algorithm for the symmetric eigenvalue prob-
lem projects the original matrix to a tridiagonal matrix whose eigenvalues
approximate the original eigenvalues. As more iterations are taken the ap-
proximate eigenvalues become more accurate with the eigenvalues at the
extreme ends of the spectrum converging first. The Lanczos algorithm does
not modify the original matrix. The only computation involving the matrix
is a matrix vector product.

The basic Lanczos algorithm must be modified in several ways to handle
the symmetric generalized eigenproblem. One modification is to switch to a
block Lanczos algorithm which operates on several vectors simultaneously
and reduces the original matrix to block tridiagonal form. Even though
convergence becomes slower for larger blocksizes, a block algorithm can
become overall more efficient in terms of execution time. Furthermore a
block algorithm can easily handle multiple eigenvalues with multiplicity less
than or equal to the block size.

Another modification is the use of a a shifted Lanczos algorithm. The
shifted algorithm is related to inverse iteration in that the eigenvalues which
are close to the chosen shift values converge most rapidly. This allows the
Lanczos algorithm to compute approximations of many eigenvalues near
the shift. The shifted Lanczos algorithm does require a factorization of
K -uM (K -UK6, A -uB) along with the ability to perform forward and
backsubstitution operations with the factored matrix.

The implementation of the block shifted Lanczos algorithm [3] also employs
an automatic shifting strategy. The user specified computational interval
is searched for eigenvalues using judiciously placed shifts. The use of the
inertia counts [3,5] assures that no eigenvalues are missed.

The block shifted Lanczos algorithm [3] was developed for sparse prob-
lems arising in structural engineering. Its development was funded by the
MacNeal-Schwendler Corporation for inclusion in MSC NASTRAN, a struc-
tural engineering analysis package. The Lanczos code was developed with
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a modular structure to allow it to be used in other applications (see Fig-
ure 1). At Boeing Computer Services, Lanczos has been connected with
an extended version of SP ARSP AK for sparse matrix operations and with
LINPACK [1] for dense matrix operations.

In addition to the three matrix operations, factorization, solution, and ma-
trix multiplication, there are several other critical areas that consume sig-
nificant amounts of compuational time. They are orthogonalization steps
within the Lanczos recurrence, the compuation of eigenvectors, Modified
Gram- Schmidt, and the eigensolution of the block tridiagonal matrix.

PERFORMANCE RESULTS

Table 1 lists the performance of Lanczos on the Cray X-MP /24 at Boe-
ing Computer Services on 7 symmetric generalized eigenproblems. These
numbers are rather bland except when placed in an historical perspec-
tive. Platzman's problems are finite difference discretizations of an oceano-
graphic model for tidal movements. They were formulated in the mid 1970s
by G. W. Platzman and proved to very difficult eigenproblems as one of
their characteristics is that all of the eigenvalues appear as doubletons. In
the 70s the eigenvalues in the interval .0001 to .024 were computed with
great difficulty. The eigenvalues in the interval .000025 to .0001 were also
of interest but impossible to compute. With the block shifted Lanczos algo-
rithm the solution to these problems took only a few seconds of computer
time and required no user intervention for their solution.

The next three problems are vibrational analyses from structural engineer-
ing. The Reactor Containment Floor was solved in 1981 using a single
vector unshifted Lanczos code on the Cray-IS in 36 seconds. The speed-
up seen on the Cray X-MP is attributal to the hardware improvements
between the two computers. The Sports Arena also was solved in 1981
with the above mentioned code in 27 seconds. The speed-up seen here is
attributal to both the hardware improvements and to the algorithmic im-
provements of block shifted Lanczos. The Columbia Center problem arose
from a full scale finite element model of the 76 story skyscraper in Seattle
of the same name. The model was abandoned in 1978 by engineers. It was
resurrected in 1981 to test the older Lanczos code. It proved to be infeasible
then because of the memory restriction of 2 Million words on our Cray-IS.
It was solved for the first time in 1986 using the new algorithm on the
X-MP. Unfortunately the finite element model was never completed by the
engineers and the eigenvalue problem had 115 zero eigenvalues (i.e. rigid
body modes). Block shifted Lanczos demonstrated remarkable robustness
in computing all of these 115 eigenvalues so that it would not miss any of
the 10 lowest that' were requested.
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The 767 Bulkhead problem was to compute the first buckling mode of the
rear bulkhead. The engineers on the project formulated the finite element
model in 1985 and were having difficulty with their statics analysis. The
buckling analysis demonstrated a error in their finite element model which
enabled them to complete their statics modeling (which does not require
an eigensolution) in a timely fashion. Without the buckling analysis they
would have had to painstakingly review their finite element model with
several thousand elements to find their modeling error.

The material science problem was the largest dense eigenproblem that could
be stored using an in-core factorization on the X- MP /24 at BCS. The 47.7
seconds using Lanczos compares to 108.5 seconds using a packed symmetric
generalized eigenvalue path in EISP ACK3. This path did not exist and the
authors created the missing components to allow this mode of solution.

A FLOWTRACE analysis for the distribution of computational time was
performed for a wide range of eigenproblems. Depending on the eigenprob-
lem the computational intensive parts of the algorithm were in the sparse
matrix reordering; matrix (both sparse and dense) factorization, solution,
and multiplication; the tridiagonal matrix analyze step; and the orthogonal-
ization steps. Except for the tridiagonal matrix analyze step, the remainder
of the computation were based on computational kernels in VectorPak [5],
a package of highly optimized computational kernels for scientific and en-
gineering applications on Cray computers.

An example of the performance improvements due to the Cray X-MP would
be the improvement of execution for the sparse matrix factorization of the
shifted matrix. The factorization is based on sparse Gaussian elimination
which requires an inner loop with indirect addressing. Table 2 presents the
execution time of the factorization on two of the matrices discussed earlier.
The times have been made relative to the most efficient factorization using a
VectorPak kernel which utilizes the hardware scatter/gather feature of the
X-MP. The other times are using CFT 1.14 or VectorPak with or without
hardware gather/scatter.

SUMMARY

The block shifted Lanczos algorithm coupled with the Cray X-MP provides
the most effective solution of large symmetric generalized eigenproblems
for both sparse and dense matrices. For sparse matrices the hardware
gather /scatter feature of the X- MP make an important reduction in exe-
cution time for the matrix operations.
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Figure 1. Structure of Lanczos Code

Problem Title Order Eigenproblem CP Time

(secs)

Platzman's Small Problem
Platzman's Large Problem
Reactor Containment Floor
Sports Arena

362
1919
1922
3562

164 e. v. in interval
648 e. v. in interval
200 smallest e. v .
10 smallest e.v.
(118 computed)
1 buckling mode
(modeling error)
30 e.v. in interval

767 Bulkhead 13992

Material Science 1496

Implementation Sports Arena

(N=3562)
Columbia Center
(N=15439)

CFT 1.14 w/out g/s
VectorPak w/out g/s
CFT 1.14 with g/s
VectorPak with g/s

6.3
2.5
1.1
1.0

8.7
3.1
1.2
1.0

Table 2. Impact of Hardware Gather/Scatter on Sparse
Gaussian Elimination. (CP times normalized so that

VectorPak with g/s = 1.0)

'7

8.8
93.9
26.8
9.5


